Dr. Todd Blackledge
Title: Professor, BRIC Core Faculty
Dept/Program: Biology
Office: ASEC E506
Phone: 330-972-4264
Fax: 330-972-8445
Email: blackledge@uakron.edu
Website: https://www.blackledgelab.com/
Biography
My lab uses spider silks as a model system to explore how evolutionary processes interact across the biological hierarchy. We especially focus on the coevolution of behaviors and biomaterials in the function of spider webs. Silks are externally expressed proteins with incredible material properties that play essential roles in the survival of spiders. The biomechanical function of silk threads in webs, lifelines, and protective egg sacs are all closely tied to the molecular structures of their constituent proteins. The spider silk system provides an ideal opportunity to explore evolutionary interactions between silk genes, protein structure, biomechanical performance, and ecological function during the 400 million year history of this biological super-material. We also investigate how the exceptional material properties of spiders silks can be utilized in biomimetic applications ranging from synthetic muscles to new types of glues.
Education
2000 Ph.D. Department of Entomology, advisor: John W. Wenzel, thesis “Stabilimenta in spider webs: Predator-prey conflict and sensory drive”, The Ohio State University
1994 B.S. Biology, The George Washington University, magna cum laude
Publications
* graduate student coauthor, ** undergraduate coauthor
Amarpuri G., Dopatkar N., Blackledge T.A. & Dhinojwala. 2022. Molecular changes in spider viscid glue as a function of relative humidity revealed using infrared spectroscopy. ACS Biomaterials Science & Engineering. 10.1021/acsbiomaterials.2c00529
Han S.I., Htut K-Z & Blackledge T.A. 2021. Permanent deformation of triangle weaver silk enables ultrafast tangle-free release of spider webs. The Science of Nature. 108:60. https://doi-org.ezproxy.uakron.edu:2443/10.1007/s00114-021-01769-3
Htut K.Z.*, Alicea-Serrano A.M.*, Signla S, Agnarsson I, Garb J.E., Kuntner M., Gregoric M., Haney R.A., Marhabaie M, Blackledge T.A. & Dhinojwala A. 2021. Correlation between protein secondary structure and mechanical performance for the ultra-tough dragline silk of Darwin’s bark spider. J. R. Soc. Interface. 18: 20210320. https://doi.org/10.1098/rsif.2021.0320
Piorkowski D., Liao C-P., Blackledge T.A. & Tso I-M. 2021. Size-related increase in inducible mechanical variability of major ampullate silk in a huntsman spider (Araneae: Sparassidae). The Science of Nature. 108:22. doi: 10.1007/s00114-021-01724-2
Alicea-Serrano A.M.*, Onyak A.**, Dhinojwala A. & Blackledge T.A. 2021. Robust performance of spider viscid silk on hairy and smooth insect substrates. Integrative and Comparative Biology. 61: 1432-1439. DOI: 10.1093/icb/icab020
Challita E.J.*, Alexander S.L.M., Han S.I.*. Blackledge T.A., Coddington J.A., Jung S., Bhamla M.S. 2021. Slingshot spiders build tensed, underdamped webs for ultrafast launches and speedy halts. Journal of Comparative Physiology A – Neuroethology, Sensory Neural and Behavioral Physiology. DOI: 10.1007/s00359-021-01475-5
Piorkowski D., Blackledge T.A., Liao C-P., Joel A-C., Weissbach M., Wu C-L. & Tso I-M. 2020. Uncoiling springs promote mechanical functionality of spider cribellate silk. Journal of Experimental Biology. 223: jeb215269 doi: 10.1242/jeb.215269
Diaz C.*, Maksuta D.*, Amarpuri G.*, Tanikawa A., Miyashita T., Dhinojwala A. & Blackledge T.A. 2020. The moth specialist spider Cyrtarachne akirai uses prey scales to increase adhesion. Journal of the Royal Society Interface. 17: doi.org/10.1098/rsif.2019.0792
Scharff N., Coddington J.A., Blackledge T.A., Agnarsson I., Framenau V.W., Szűts T., Hayashi C.Y., & Dimitrov D. 2020. Phylogeny of the orb-weaving spider family Araneidae (Araneae: Araneoidea). Cladistics. 36:1-21. doi.org/10.1111/cla.12382 (cover)
Garb J.E., Haney R.A., Schwager E.E.*, Gregorič M., Kuntner M., Agnarsson I. & Blackledge T.A. 2019. The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness. Communications Biology. 2:275.
Michalik P., Piorkowski D., Blackledge T.A. & Ramírez M.J. 2019. Behavioral modification during spinning mediates functional trade-offs in spider silk. Scientific Reports. 9:9092 https://doi.org/10.1038/s41598-019-45552-x
Han S.*, Astley H.C., Maksuta D.D.* & Blackledge T.A. 2019. External power amplification drives prey capture in a spider web. Proceedings of the National Academy of Sciences of the United States of America. 116: 12060-12065 (featured article, highlighted by PBS, National Geographic, Wired, The Atlantic, Science, Live Science)doi.org/10.1073/pnas.1821419116
Hsiung B-K.*, Shawkey M.D. & Blackledge T.A. 2019. Color production mechanisms in spiders. Journal of Arachnology. 47:165-180.
Diaz C.*, Tanikawa A., Miyashita T., Jain D., Amarpuri G., Dhinojwala A. & Blackledge T.A. 2018. Supersaturation with water explains the unusual adhesion of aggregate glue in the webs of the moth-specialist spider, Cyrtarachne akirai. Royal Society Open Science. 5: 181296. DOI: 10.1098/rsos.181296
Diaz C.*, Tanikawa A., Takarada W., Dhinojwala A., Miyashita T. & Blackledge T.A. 2018. Silk structure rather than tensile mechanics explains web performance in the moth-specialized spider, Cyrtarachne. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 329:120-129. (cover)
Jain D.*, Amarpuri G.*, Fitch J.**, Blackledge T.A. & Dhinojwala A. 2018. Role of hygroscopic low molecular mass compounds in humidity responsive adhesion of spider’s capture silk. Biomacromolecules. 19: 3048-3057.
Singla S.*, Amarpuri G., Dhopatkar N.*, Blackledge T.A., Dhinojwala A. 2018. Hygropscopic compounds in spider aggregate glue remove interfacial water to maintain adhesion in humid conditions. Nature Communications. 9:1890 (top 50 read articles of 2018) doi: 10.1038/s41467-018-04263-z
Piorkowski, D.*, T.A. Blackledge, Liao C-P., Doran N.E., Wu C-L, Blamires S.J. & Tso I.-M. 2018. Humidity-dependent mechanical and adhesive properties of Arachnocampa tasmaniensis capture threads. Journal of Zoology. 305: 256-266. doi:10.1111/jzo.12562
Opell B.D, Jain D*, Dhinojwala A & Blackledge TA. 2018. Tuning orb spider glycoprotein glue performance to habitat humidity. Journal of Experimental Biology. 221 doi:10.1242/jeb.161539 (cover, invited review)
Hsiung B-K.*, Siddique R.H., Stavenga D.G., Otto J.C., Allen M.C., Liu Y., Lu Y., Deheyn D.D., Shawkey M.D. & Blackledge T.A. 2017. Rainbow peacock spiders inspire miniature super iridescent optics. Nature Communications. 8:2278. doi: 10.1038/s41467-017-02451-x (highlighted in LiveScience, Nature, PhysOrg, Smithsonian)
Piorkowski, D.** & Blackledge, T.A. 2017. Punctuated evolution of viscid silk in spider orb webs supported by mechanical behavior of wet cribellate silk. The Science of Nature. 104:67
Hsiung B-K.*, Justyn N.M.**, Blackledge T.A. & Shawkey M.D. 2017. Spiders have rich pigmentary and structural colour palettes. Journal of Experimental Biology. 220:1975-1983.
Amarpuri G.*, Zhang C.*, Blackledge T.A. & Dhinojwala A. 2017. Adhesion modulation using glue droplet spreading in spider capture silk. Journal of the Royal Society Interface. 14: 20170228. DOI: 10.1098/rsif.2017.0228 (cover)
Blamires, S.J, Blackledge T.A. & Tso, I-Min. 2017. Physicochemical property variation in spider silk: ecology, evolution and synthetic production. Annual Review of Entomology. 62:443-460.
Hsiung B-K.*, Siddique R., Jiang L., Liu Y., Lu Y., Shawkey M.D. & Blackledge T.A. 2017 Tarantula-inspired non-iridescent photonics with long-range order. Advanced Optical Materials. 5: 1600599. (cover, featured in PNAS)
Jain D.*, Blackledge T.A., Miyoshi T. & Dhinojwala A. 2016. Unraveling the design principles of black widow’s gumfoot glue. In: Smith A.M. (ed.) Biological Adhesives. Springer. 303-319.
Madurga R.*, Plaza G.R., Blackledge T.A., Guinea G., Elices M., & Perez-Rigueiro J. 2016. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter. Scientific Reports (Nature publishing) 6:18991.
Hsiung B-K.*, Shawkey M.D. & Blackledge T.A. 2015. Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity. Science Advances. 1: e1500709 DOI: 10.1126/sciadv.1500709. (featured by The Atlantic, BBC, Live Science, MIT Tech, PhysOrg, Science News)
Madurga R.*, Blackledge T.A., Perea B., Plaza G.R., Riekel C., Burghammer M., Elices M., Guinea G. & Perez-Rigueiro J. 2015. Persistence and variation in microstructural design during the evolution of dragline silk. Scientific Reports (Nature publishing) 5:14820.
Jain D.*, Zhang C.*, Cool L.R., Blackledge T.A., Wesdemiotis C., Miyoshi T. & Dhinojwala A. 2015 Composition and function of spider glues maintained during the evolution of cobwebs. Biomacromolecules. DOI: 10.1021/acs.biomac.5b01040
Amarpuri G*, Chaurasai V**, Jain D*, Blackledge TA & Dhinojwala A. 2015. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion. Scientific Reports. 5: 9030.
Sahni V.*, Miyoshi T., Chen K.**, Jain D.*, Blamires S.J., Blackledge T.A. & Dhinojwala A. 2014. Direct solvation of glycoproteins by salts in spider silk glues enhances adhesion and helps to explain the evolution of modern spider orb webs. Biomacromolecules 15:1225-1232.
Marhabaie M.**, Leeper T.C. & Blackledge T.A. 2014. Protein composition correlates with the mechanical properties of spider (Argiope trifasciata) dragline silk. Biomacromolecules 15: 20-29.
Boutry C.* & Blackledge T.A. 2013. Wet webs work better: humidity, supercontraction and the performance of spider orb webs. Journal of Experimental Biology. 213. 3606-3610.
Sensenig A., Kelly S.P.**, Lorentz K.A.**, Lesher B.** & Blackledge T.A. 2013. Mechanical performance of spider orb webs is tuned for high-speed prey. Journal of Experimental Biology. 216: 3388-3394.
Blackledge, T.A. 2013. Spider silk: molecular structure and function in webs. In: Nentwig, W. Spider Ecophysiology, Springer. Pp. 267-281.
Blackledge, T.A., M. Kuntner, M. Marhabaie*, T.C. Leeper, Agnarsson, I. 2012. Biomaterial evolution parallels behavioral innovation in the origin of orb-like spider webs. Scientific Reports (Nature publishing) 2:833.
Blackledge, T.A., Pérez-Rigueiro, J., Plaza, G.R., Perea, B.*, Navarro, A.*, Guinea, G.V., Elices, M. 2012. Sequential origin in the high performance properties of orb spider dragline silk. Scientific Reports (Nature publishing). 2:782.
Sahni V.*, Harris J.**, Blackledge T.A., Dhinojwala A. 2012. Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nature Communications 3: 1106.
Sensenig A., Lorentz K.A**, Kelly S.P.** & Blackledge T.A. 2012. Spider orb webs rely on radial threads to absorb prey energy. Journal of the Royal Society Interface. 9: 1880-1891.
Blackledge T.A. 2012. Spider silk: a brief review and prospectus on research linking biomechanics and ecology in draglines and orb webs. Journal of Arachnology. 40:1-12.
Blackledge T.A., Kuntner M. & Agnarsson I. 2011. The form and function of spider orb webs: evolution from silk to ecosystems. Advances in Insect Physiology. 41:175-262.
Sahni V.*, Blackledge T.A. & Dhinojwala A. 2011. Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs. Scientific Reports (Nature publishing). 1:41.
Boutry C.* & Blackledge T.A., 2010. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers. Journal of Experimental Biology. 213: 3505-3514.
Agnarsson I., Kuntner M. & Blackledge T.A. 2010. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider. PLoS One. 5(9):e11234. Doi:10.1371/journal.pone.0011234. (Featured in Science, BBC, National Geographic News, Discovery News, Smithsonian, Time, etc.)
Sahni V*, Blackledge T.A. & Dhinojwala A. 2010. Viscoelastic solids explain spider web stickiness. Nature Communications 1:19 DOI: 10.1038/ncomms1019. (featured in WKSU-FM, WKYC-TV, NSF, Nature News, etc.)
Agnarsson I., Dhinojwala A., Sahni V.*, & Blackledge T.A.. 2009. Spider silk as a novel high performance muscle driven by humidity. Journal of Experimental Biology. 212:1990-1994. (cover article featured in Conservation Magazine, Discovery News, Inside JEB, MedGadget, WKYC-TV, WOSU, NanoWerk New Scientist, Popular Mechanics, etc.)
Blackledge T.A, Scharff N., Coddington J., Szüts T., Wenzel J.W., Hayashi C.Y. & Agnarsson I. 2009. Spider web evolution and diversification in the molecular era. Proceedings of the National Academy of Sciences. 106: 5229-5234. (featured in Associated Press article, Columbus Dispatch)
Blackledge T.A. & Hayashi C.Y. 2006. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata. Journal of Experimental Biology. 209: 2452-2461. (cover article, featured in Natural History)
Blackledge T.A. & Gillespie R.G. 2004. Convergent evolution of web building behaviors in an adaptive radiation of Hawaiian spiders. Proceedings of the National Academy of Sciences. 101: 16228-16233. (featured in GEO & BBC Wildlife magazines)